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A transient three-dimensional model of a porous regenerator operating at room temperature is pre-
sented. The solid magnetic material and the regeneration fluid are modeled separately. The fluid flows
through interstitial channels formed by a regular matrix of solid particles. The velocity, pressure and tem-
perature fields are obtained from the simultaneous solution of the Navier–Stokes and energy equations
with variable properties in the solid and the Boussinesq approximation for the fluid. The magnetocaloric
effect (MCE) is taken into account by the inclusion of a source term in the energy equation for the mag-
netic solid. Special numerical schemes are used to avoid unrealistic computation time and memory
requirements. Typical velocity fields and transient temperature profiles are presented.
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1. Introduction are constructed in a modular fashion and use permanent magnets
The temperature rise of a magnetic material generated by the
application of a magnetic field, the magnetocaloric effect (MCE),
was first observed by Warburg in 1881 [1]. Debye later developed
the basis of the magnetic refrigeration (MR) cycle to attain cryo-
genic temperatures [2]. In the mid 70’s, Brown proved MR could
work at ambient temperatures by generating a temperature differ-
ence of 47 K with a ferromagnetic refrigerant. More recently, the
MR prototypes often operate near ambient temperature and follow
a process known as active magnetic regeneration (AMR) proposed
by Barclay [3]. The AMR cycle comprises four processes. During the
magnetization, the magnetic field is applied to the ferromagnetic
refrigerant resulting in an increase of its initial temperature due
to the MCE. Maintaining the field, fluid flow regenerates the solid
and rejects the MCE heat towards a warm sink. Next, the field is
deactivated resulting in a temperature drop of the solid refrigerant
induced by the MCE. Because of the preceding regeneration pro-
cess, the solid temperature is now lower than it was at the start
of the cycle. Finally, fluid flows in the opposite direction regenerat-
ing the solid and allowing heat addition from a cold source. Astro-
nautics Corporation of America [4,5] and Chubu Electric Power [6]
research teams presented similar MR prototypes. They both use
porous regenerator beds assembled on a wheel rotating in and
out of a magnetic field generated by a permanent magnet. Gadolin-
ium or gadolinium alloys particles are filling the regenerator beds.
Other prototypes put emphasis on versatility of the design such as
the works of Bohigas et al. [7] and Clot et al. [8]. Their prototypes
ll rights reserved.
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and gadolinium thin sheets.
The regenerator usually reaches steady state operation after

several MR thermodynamic cycles are completed. In this state, it
displays a quasi linear temperature profile in opposition to the uni-
form initial temperature distribution. Therefore, the regenerator
displays a cold end and a hot end depending on fluid flow direc-
tion. For optimum efficiency, the mean regenerator temperature
must be close to the solid Curie temperature for which the MCE
is maximum. Because of this aspect, the latest MR prototypes dis-
play layered regenerator beds of multiple ferromagnetic solids
chosen in such a way that their Curie point follows the regenerator
temperature profile [9,10].

Because of the complexity of the regenerator operation, its per-
formance cannot be assessed with accuracy. As a consequence, the
global efficiency of a MR system can only be approximately esti-
mated. Data regarding thermal behavior of the regenerator is gath-
ered from measurements on MR prototypes. The regenerator is
usually considered as a black box characterized by the entrance
and exit states of the fluid. The internal temperature distribution
of the regenerator is rarely measured. Clot et al. [8] performed such
measurements with a regenerator made of thin gadolinium sheets.

The measured data is useful, but specific to a prototype. Numer-
ical simulations are more general and allow the quantification of
the hydrodynamic and thermal phenomena taking place within
the regenerator. The few regenerator models presented so far in
the literature [11,12] are all of the same type. They are transient
one dimensional effective models. The internal flow through the
porous magnetic material is replaced by an external flow around
a consolidated solid of simple geometry. The fluid velocity of this
external flow is considered uniform and is computed from the
imposed mass flow. Hence, the flow field is uncoupled from the
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Nomenclature

B magnetic field density (T)
BU Brillouin function
cp specific heat (J/kg K)
F body force (m/s2)
G Lande factor
H magnetic field intensity (A/m)
H0 external field intensity (A/m)
Hm molecular field intensity (A/m)
k thermal conductivity (W/m K)
kB Boltzmann constant (J/K)
M magnetization (A/m)
N particle number
n normal direction
Nd demagnetization factor
p pressure (Pa)
SS energy source (W/m3)
SM magnetic entropy (J/kg K)
SL lattice entropy (J/kg K)
SE electronic entropy (J/kg K)
t time (s)
Dt time step (s)
T temperature (K)
Tc Curie temperature (K)
TD Debye temperature (K)

DTad Magnetocaloric effect MCE (K)
U net atomic spin component
V Velocity (m/s)

Greek symbols
g energy ratio
c electronic cp coefficient (J/kg K2)
k MFA constant (T2/J)
l magnetic permeability (H/m)
lB Bohr magneton (J/T)
lr relative permeability
l0 free space permeability (H/m)
m kinematic viscosity (m2/s)
u scalar magnetic potential (A)
q density (kg/m3)

Subscripts
f fluid
i section number
in inside
n time interval
s solid
y flow direction

Fig. 1. Schematic representation of a portion of the porous regenerator.
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temperature field and only the energy equations in the fluid and in
the solid are solved. Effective physical properties of the solid are
described via the porosity parameter. Heat exchange between the
fluid and solid phases is obtained from a Nusselt number correla-
tion defined as a function of Reynolds and Prandtl numbers. When
considered, pressure drop across the regenerator is modeled using
a friction factor correlation. The resulting equations are usually
solved for the unknown fluid and solid temperatures using the fi-
nite difference method on a two-dimensional space-time grid.

The results generated by these models, although valuable, show
discrepancies with experimental data. The differences are mainly
caused by the use of the heat transfer correlation and the over sim-
plification of the porous geometry. Also, the disregard of the inter-
action between the flow and temperature fields impacts the heat
exchange between phases. To eliminate the use of heat transfer
and pressure drop correlations, the velocity, pressure and temper-
ature fields must be solved simultaneously. In doing so, a porous
geometry close to reality has to be modeled. Because of the depen-
dence of the MCE on temperature and the transient character of
the problem, the regenerator cannot be simulated as a single rep-
resentative cell. Its full extend must be modeled, at least in the
flow direction. The numerical solution requires time to implement
and important computation power. This explains the simplified
model formulations presented so far in the literature.

In this paper we present a new model for the description of the
transient flow and temperature fields in a parallelepipedic MR regen-
erator filled with small gadolinium particles. It is based on the three-
dimensional Navier–Stokes equations for the fluid flow around these
discrete particles which are alternatively heated and cooled during
magnetization and demagnetization. The adopted numerical solution
is explained and typical results are presented and analysed.

2. Model description

2.1. Regenerator geometry

The dimensions of the prototype parallelepipedic regenerator
under construction are 25, 50 and 100 mm in the x, z and y direc-
tions respectively. The fluid flows in the positive y direction during
magnetization and in the opposite direction during demagnetiza-
tion. A group of channels are formed by stacking particles in the
regenerator volume. Two constraints dictate the particles shape
in the adopted model. First, to be true to the prototype, the regen-
erator porosity must display an adjustable value between 40% and
50%. Second, the meshing tools produce poor quality meshes when
half or quarter particles are present. As a consequence, only full
particles must be stacked. Because of this, cubic centered, cubic
face centered or hexagonal compact structures do not allow the
minimum target porosity to be attained. Instead, the porous matrix
is built with a combination of ellipsoids and spheres. The spheres
are positioned in the interstices of adjacent ellipsoids as shown
in Fig. 1 which depicts a small portion of the entire regenerator.
The xOy and yOz planes are parallel to the walls of the regenerator
which is made up by a juxtaposition of several such portions. The
mean particle diameter is 0.5 mm. Stacked at full capacity, the
porosity of this regenerator is 33%.



J. Bouchard et al. / International Journal of Heat and Mass Transfer 52 (2009) 1223–1229 1225
2.2. Mathematical formulation

In this section, a general methodology to describe the detailed
transient operation of a ferromagnetic regenerator under nonzero
magnetic field is presented. It includes three distinct groups of
equations: the hydrodynamic and energy equations for the fluid,
the energy equation for the solid particles and the magnetic field
equations. Because the fluid is considered incompressible the con-
tinuity and momentum equations are as follows:

~r � ~V ¼ o ð1Þ
o~V
ot
þ ð~V :~rÞ~V ¼~F � 1

qf

~rpþ m~r2~V ð2Þ

where V is the velocity, F the body force, p the pressure, qf the fluid
density and m the fluid kinematic viscosity. Turbulence closing
equations are not needed. Indeed, the fluid flow is sufficiently
low speed to be treated as laminar. The flow is single-phased and
there is no surface tension since the ferromagnetic solid is always
surrounded by the regenerator fluid, even when not cycling, to
avoid oxidation. Hence, capillary forces induced by adhesion and
cohesion are irrelevant to the present model and, therefore, gravity
is the only body force considered. The application of Boussinesq’s
hypothesis implies that the density in the expression of this force
is temperature dependent. If viscous dissipation is neglected due
to low mass flow, the temperature of the fluid obeys the following
energy equation:

qf ðcpÞf
oT f

ot
þ ~V � ~rT f

� �
¼ kf

~r2T f ð3Þ

where Tf, cp and kf are respectively the fluid temperature, specific
heat and thermal conductivity.

In addition, the temperatures of the regeneration fluid and the
magnetic solid are closely related. The variation of the external
magnetic field generates the MCE which elevates or lowers the
temperature of the solid. Hence, the fluid and solid temperatures
are constantly evolving during the course of MR cycles. The MCE
temperature variation DTad is transformed into an energy density
and included in the energy equation for the solid [13]:

qscpðH; TsÞ
oTs

ot
¼ ks

~r2Ts þ SsðH; TsÞ ð4Þ

Ss ¼
qscpðH; TsÞDTadðH; TsÞ

Dt
ð5Þ

where H is the magnetic field intensity, Ts, qs, ks and cp(H,Ts) the
temperature, density, thermal conductivity and specific heat of
the solid. The term Ss is a source (positive) during magnetization
and a sink (negative) during demagnetization. The special treat-
ments required for the computation of the specific heat of the solid
and the MCE temperature variation DTad is presented in the next
section.

Finally, magneto-static theory can be used to determine the
field intensity within the ferromagnetic material. In the absence
of real currents, scalar magnetic potential formulation may be ap-
plied [14]. The gradient of this potential corresponds to the mag-
netic field intensity.

j~Hj ¼ �j~r/j ð6Þ

The magnetic potential u is obtained from the following
equation:

~r � ½lrðH; TsÞ~r/� ¼ 0 ð7Þ

The relative magnetic permeability lr is generally not spatially
uniform. Therefore, the magnetic field intensity will vary within
the solid. Hence, the resulting MCE temperature variation will be
dependent on position and the energy source will also vary within
the solid. The rate of heat transfer between the solid and the fluid,
already not uniform because of convection heat transfer, will
surely be additionally affected by the magnetic field non-uniform
spatial distribution.

The magnetic potential, the magnetic field intensity, the tem-
peratures of the solid and the fluid, the fluid velocity components
and the fluid pressure form a system of eight unknowns governed
by Eqs. (1)–(7). They must be solved simultaneously because of the
strong coupling between the magnetic, temperature and velocity
fields.

2.3. Properties of the ferromagnetic solid

Except for the magnetic permeability, the specific heat and the
MCE, all the other properties of the solid required for the solution
of the equations are considered constant. The magnetic permeabil-
ity of the ferromagnetic solid is obtained from experimental data.
Isotherms of magnetization M versus applied field are usually mea-
sured for samples such as spheres, disks or cylinders. In those
cases, the following simple relationship exists between applied
and internal field intensity [15]:

jHj ¼ jHappliedj � NdjMj ð8Þ

The demagnetization factor Nd in Eq. (8) is a constant which de-
pends on the shape of the sample. Once H is evaluated with Eq. (8)
using the applied field and the measured magnetization, Eq. (9) is
used to compute the corresponding magnetic permeability.
Because sharp variations are typical, two dimensions temperature
and field intensity interpolation generates the best magnetic per-
meability values [13].

lr ¼ 1þM=H ð9Þ

The specific heat of the ferromagnetic solid displays a sharp
maximum around its Curie temperature. Hence, the statistical
physics molecular field approximation (MFA) cannot alone de-
scribe adequately this property. The MFA is therefore corrected
with the temperature dependent measured specific heat data for
zero magnetic field. First, the specific heat is expressed as a func-
tion of magnetic SM, lattice SL and electronic SE entropy [16]:

cpðH; TsÞ ¼ Ts
oSMðTs;HÞ

oTs
þ oSLðTsÞ

oTs
þ oSEðTsÞ

oTs

� �
ð10Þ

Statistical physics provide expressions for each entropy compo-
nent. The lattice and electronic components are only functions of
the temperature:

SL ¼ NkB �3 ln 1� e�ðTD=TsÞ
� �

þ 12
Ts

TD

� �3 Z TD=Ts

0

v3

ev � 1
dv

" #
ð11Þ

SE ¼ cTs ð12Þ

where N is the particle number, kB the Boltzmann constant, TD the
Debye temperature, c the electronic entropy coefficient and v an
integration variable. The magnetic component is written in terms
of the Brillouin function BU which argument g is the ratio of mag-
netic and thermal energy.

SM ¼ NkB ln
sinh½gðU þ 1=2Þ�

sinhðg=2Þ

� 	
� gUBUðgÞ

� �
ð13Þ

BUðgÞ ¼
1
U
½ðU þ 1=2Þ coth½ðU þ 1=2Þg� � ð1=2Þ cothðg=2Þ� ð14Þ

g ¼ glBðH þ kMÞ
kBTb

ð15Þ

With the net atomic spin component U, the Lande factor g, the Bohr
magneton lB and the MFA constant k which is a function of U and
the exchange integral [16]. This model generates satisfying results
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only past the Curie temperature in the paramagnetic region. Below
the transition temperature, in the ferromagnetic region, the MFA is
corrected with experimental data for cp(0,Ts). Thus:

cpðH; TsÞ ¼ cpð0; TsÞ � T
oðSMð0; TsÞ � SMðH; TsÞÞ

oTs
ð16Þ

The magnetic entropy decreases with increasing field. Hence,
the specific heat in zero magnetic field is always greater than in
non zero field. Fig. 2 compares the predictions of the corrected
and uncorrected specific heat models for gadolinium [13] with
the corresponding experimental data measured by Tishin [17].

The MCE temperature variation is computed by the integral Eq.
(17) given by Tishin [18]. It emphasises the fact that the MCE is
generated by the variation of the magnetic field intensity. The cor-
rected specific heat model is reused to evaluate the integrant. The
magnetization is directly derived from the MFA and defined in
terms of the Brillouin function presented in Eq. (14).

DTadðDH; TsÞ ¼ �
Z H2

H1

Ts

cpðH; TsÞ
ðoMðH; TsÞ

oTs
ÞHdH ð17Þ

MðH; TsÞ ¼ NglBUBUðgÞ ð18Þ

The MCE temperature variation displays sharp variations near
the Curie temperature. As a consequence, the most robust numer-
ical integration methods are necessary to evaluate this effect. Fig. 3
illustrates the MCE of gadolinium for a 2 T rise or drop of the mag-
netic field.

2.4. Symmetries, boundary and initial conditions

Since all the regenerator walls are considered to be adiabatic
and the solid particles are set in a regular pattern, symmetries
are effective across the planes normal to the axes Ox and Oz of
Fig. 1. Therefore these planes define a reduced computation do-
main. The y extent stays equal to the stream wise length of the
regenarator, but the x and z extents are respectively equal to three
and four mean particle diameters (i.e. 1.5 mm and 2 mm, respec-
tively). This reduced domain allows for smaller computation time
and memory requirements. Its walls consist of fluid. Hence, all
boundary conditions are defined for the fluid variables. The z = 0,
z = 2, x = 0 and x = 1.5 mm symmetry planes are assigned with
standard boundary conditions (Fig. 4). Since there is no fluid flow
through a symmetry plane, the normal velocity is zero. Also, the
tangential velocity components and the temperature gradients in
the normal direction are zero.

The planes y = 0 and y = 100 mm are the entrance or the exit for
the fluid flow. During magnetization, the fluid enters at the cold
end (y = 0) and exits at the hot end (y = 100 mm). During demagne-
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Fig. 2. Specific heat of Gd versus temperature under a constant magnetic field
(B = 2 T).
tization, the fluid flows from the hot end to the cold end. In both
cases, the entrance velocity is considered uniform and proportional
to the imposed mass flow.

The fluid entrance temperature is different during magnetiza-
tion and demagnetization. It is fixed according to MR cycling data.
Conservative interface flux is applied at the fluid–solid interface.
The heat flux computed on the fluid side of the interface is set
equal to the heat flux on the solid side of the interface. The bound-
ary condition for fluid pressure is treated in a standard fashion by
fixing the reference pressure at an arbitrary point. It should be
noted that boundary conditions at the exit (y = 100 mm during
magnetization and y = 0 during demagnetization) are not neces-
sary since the equations are simplified by neglecting second order
axial derivatives at that position. In other terms, the momentum
equations are locally parabolic.

A large control volume which surrounds the computation do-
main is defined to set the magnetic potential boundary conditions
as depicted in Fig. 5. The magnetic field at the walls of this large
control volume is considered to be undisturbed by the ferromag-
netic particles. Hence, a constant and uniform field distribution is
effective at the box walls. For example, equipotential XY planes will
be created if a uniform field is applied in the z direction as shown
in Fig. 5. Near and within the ferromagnetic solid particles, the po-
tential distribution is disturbed altering the field distribution.

At the beginning of the first MR cycle, i.e. before the first mag-
netization, the initial fluid velocity is set to zero. Also, the solid and
domain
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Fig. 5. Scalar magnetic potential boundary conditions.
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fluid initial temperatures are set equal. If the initial temperature is
uniform, many MR cycles must be simulated to reach the regener-
ator steady state operation. In order to reduce this initial transient
calculation a linear temperature profile between typical tempera-
tures for the cold and hot ends is imposed. All the subsequent res-
olutions are initialized with the final state of the previous time
step.

3. Numerical procedure

The magnetic phenomena of the MCE take place at a much
shorter time scale than the thermal effects occurring during the
regenerator operation. Hence, the temperature variations induced
by the MCE are considered instantaneous in comparison with the
ones associated with heat transfer. The MR cycle is then modeled
as four sequential steps. First, the magnetization: the magnetic
field is applied and generates the MCE x(cf. Fig. 3). Second, fluid
flows from the cold to the hot end with the magnetic field still
effective. Third, the demagnetization: the magnetic field is re-
moved generating a drop of the solid’s temperature (cf. Fig. 3). Fi-
nally, fluid flows from the hot to the cold end in zero magnetic
field. This MR cycle is repeated with constant frequency.

A time step Dt is chosen for the resolution during the periods of
fluid flow. The time step is infinitesimal during the magnetization
and demagnetization steps. The source term in the energy equation
of the solid displays a high value and generates a fast temperature
response. This numerical scheme models the instantaneous nature
of the MCE. Also, the source term needs to be linearized in the
course of the numerical solution (Eq. (19)). This way, it can be sub-
jected to the same discretization methods applied for the other
terms. The Sp component value must always be less than or equal
to zero for the numerical solution to be stable [19].

Ss ¼ Su þ SpTs ð19Þ

The coupled system of partial differential equations is solved
using the finite volume (FV) methodology. A dense unstructured
mesh is used through the computation domain except at the walls
of the solid particles. There, regular parallelepiped FV are required
for the correct computation of the heat transfer between the solid
and fluid phases. The mesh density is chosen after several tests as
the minimum required to insure simulation results independency.
More than 17 millions FV compose the computation domain. This
number exceeds the practical limits of most meshing tools. Hence,
as indicated in Fig. 6, the computation domain is divided in 10 sec-
tions in the flow direction.

The transient solution of each section is completed one after the
other. The order of solution follows the flow direction; sections 1–
10 during magnetization and sections 10–1 during demagnetiza-
tion. Fluid entrance conditions are set for section 1 during magne-
tization and section 10 during demagnetization. Additional
entrance profiles must be defined for all the internal sections. In
order to propagate the entrance conditions through the domain,
the fluid exit state of one section becomes the entrance state of
the next. In addition, the fluid exit state changes at every time step
Dt. Hence, the internal sections entrance profiles are constantly
1 2 3Magnetization

coldT

Fig. 6. The computatio
updated for each time step. The strategy for section i is illustrated
in Fig. 7. The output velocity and temperature distributions of the
preceding section at instant nDt are injected as the input for the
resolution of section i.

This marching solution scheme is valid because the information
only propagates in the flow direction. As long as the entrance con-
ditions of the internal sections are updated, the downstream sec-
tions can be ignored during the solution process. This fact is
validated by comparing two simulations with identical conditions
but with different divisions of the domain. One is done on a full
section and the other on half a section. The results confirm that
the solution in the first half of the full section is identical to that
obtained with the half section. This is illustrated in Fig. 8 for the
fluid temperature on a typical path in the porous section.

4. Magnetocaloric effect validation

Pure gadolinium particles were stacked in a polymer casing
transparent to magnetic field and disposed in between the poles
of an electromagnet. Isolated thermocouples are inserted in the
porous solid and measure its temperature rise when current circu-
lation activates the effective magnetic field of 0.75 T. As is showed
by the measured data presented in Fig. 9, the careful choice of
mash technique allowed the gadolinium to fully preserve its ferro-
magnetic properties. The Curie temperature of the sample was
determined to be close to 292.2 K corresponding to standard values
[18]. Also, the experimental EMC is in accordance with the EMC
rule of thumb values of 2–3 K/T [18]. Fig. 9 also indicates that
the EMC generated by the model (Eq. (17)) is in good agreement
with the measured data.
8 9 10 Demagnetization

hotT

n domain division.
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5. Preliminary results and discussion

Velocity and temperature fields have been calculated for the MR
cycle operating conditions presented in Table 1. Water flows in a
porous gadolinium matrix. Since the magnetic field is fixed to a
constant value, the scalar magnetic potential equation is not solved
although the solid specific heat and the MCE are still evaluated as a
function of the time varying field and the local temperature Eqs.
(16) and (17). To operate in the steady state regime, the initial tem-
perature is set to a linear profile between the fluid entrance tem-
peratures. The fluid is allowed to flow for 6.63 s after the
magnetic field application and its removal. Hence, a full cycle is
completed in 13.26 s.

The most efficient steady state MR cycle results in the case of
complete regeneration. In other words, MCE will always be maxi-
mum if the solid initial temperature is restored after the magnetic
field variations. Therefore, there exist an explicit relation between
the fluid velocity and its residence time within the regenerator that
will satisfy this condition. Through multiple trials, such a relation
was established for the model. The operating conditions in Table
1 reflect this relation.

Fig. 10a presents a typical velocity field in a plane normal to the
x axis at an inner section of the porous domain. The field is well
rendered even in the smallest inter-particle channels. The flow
field exhibits inertial cores like the ones observed in the flow re-
gimes classification work realized by Dybbs and Edwards [20]. In
these cores, typical of the inertial flow regime [20], inertia is the
dominant force whereas in the boundary layers, both inertia and
viscous forces are important. For the mass flow under consider-
ation, the boundary layers are very close to the particles surface.
For the same location as Fig. 10a and b presents the temperature
field during the solid regeneration after magnetization. Tempera-
ture gradients within particles are visible. Both figures give a good
insight into the detailed level of the simulations.

Fig. 11a and b show, respectively, the average solid and fluid
bulk temperatures for each of the 10 sections used for the march-
ing solution (c.f. Fig. 6) at different instants during the fluid flow
Table 1
Regenerator operating conditions

Solid material Gadolinium (Gd)
Fluid Water
Regenerator porosity 40%
Mass flow rate 2.1 (L/min)
Magnetization entrance temperature Tc � 2.5 = 279.17 (K)
Demagnetization entrance temperature Tc + 2.5 = 284.17 (K)
Magnetic field 2 (T)
Initial temperature Linear profile
Time for fluid flow 6.63 (s)
Time step for profiles update 1.326 (s)
from the cold (y = 0) to the hot (y = 100 mm) end following mag-
netisation. As expected, both these temperatures increase in the
flow direction. When the magnetic field is applied, the temperature
of the solid increases from the initial profile (t = 0) to the one iden-
tified as ‘‘magnetization”. The colder temperature of the fluid
entering the regenerator at y = 0 induces a rapid decrease of the so-
lid’s temperature. At subsequent instants the temperature differ-
ence between the solid and the fluid decreases substantially. It
should be noted that the temperature of the solid decreases mono-
tonically with time. At the end of this cooling process (i.e. at
t = 6.63 s) its temperature is only about 0.15 K higher than its ini-
tial temperature. Therefore, the regeneration of the solid is nearly
perfect. On the other hand, the bulk temperature of the fluid
(Fig. 11b) does not vary monotonically with time. It increase dur-
ing the initial half of this heat transfer process since the corre-
sponding rate of heat transfer is high in accordance with the
large initial temperature difference between the solid and the fluid.
Later (t > 2.652 s) this temperature difference is small and the rate
of heat transfer decreases. Therefore the fluid temperature de-
creases towards its lowest value which occurs at t = 6.63 s.

For the subsequent demagnetization and flow in the opposite
direction (i.e. from the hot end at y = 100 mm towards the cold
end at y = 0), the solid and fluid evolutions are similar, but with
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Fig. 11. Temperature profiles during magnetization for operating conditions
(Table 1).
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temperature variations inverted (the fluid is warmer than the solid
particles).

6. Conclusion and future work

A transient three-dimensional model taking into consideration
the porous character of a regenerator used for magnetic refrigera-
tion has been successfully developed and solved numerically. It
takes into account the coupled effects of the temperature and
velocity fields. The solid magnetic particles and the regeneration
fluid are modeled separately. The energy equation for the former
includes a source term which corresponds to the magnetocaloric
effect. The fluid flow through the interstitial channels formed by
the solid magnetic particles and the corresponding heat transfer
are modeled by the Navier–Stokes and energy conservation equa-
tions for the fluid. As far as we can ascertain, this is the first de-
tailed and realistic model for a porous magnetic refrigeration
regenerator.

The numerical solution of the system of coupled partial differ-
ential equations was obtained using a marching technique and a
subdivision of the computation domain into 10 stream wise sec-
tions. This approach limits the required computer memory and
the CPU time necessary for the simulation of several successive
magnetic refrigeration cycles. Typical velocity and temperature
field predictions show that the numerical results are quite realistic.

Detailed model results regarding heat transfer and pressure
drop as well as the complete description of the regenerator exper-
imental setup and the presentation of the extensive data generated
are the subject of upcoming papers.
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